
On Self-Distilling Graph Neural Network

Yuzhao Chen,1,2 , Yatao Bian,2 , Xi Xiao,1 , Yu Rong,2 , Tingyang Xu,2 , Junzhou Huang 2,3

1Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China 518057,
2Tencent AI Lab, Shenzhen, China 518057,

3University of Texas at Arlington, Arlington, TX 76019,

Abstract
Recently, the teacher-student knowledge distil-
lation framework has demonstrated its poten-
tial in training Graph Neural Networks (GNNs).
However, due to the difficulty of training over-
parameterized GNN models, one may not eas-
ily obtain a satisfactory teacher model for distil-
lation. Furthermore, the inefficient training pro-
cess of teacher-student knowledge distillation also
impedes its applications in GNN models. In this
paper, we propose the first teacher-free knowl-
edge distillation method for GNNs, termed GNN
Self-Distillation (GNN-SD), that serves as a drop-
in replacement of the standard training process.
The method is built upon the proposed neighbor-
hood discrepancy rate (NDR), which quantifies the
non-smoothness of the embedded graph in an effi-
cient way. Based on this metric, we propose the
adaptive discrepancy retaining (ADR) regularizer
to empower the transferability of knowledge that
maintains high neighborhood discrepancy across
GNN layers. We also summarize a generic GNN-
SD framework that could be exploited to induce
other distillation strategies. Experiments further
prove the effectiveness and generalization of our
approach, as it brings: 1) state-of-the-art GNN dis-
tillation performance with less training cost, 2) con-
sistent and considerable performance enhancement
for various popular backbones.

1 Introduction
Knowledge Distillation (KD) has demonstrated its effective-
ness in boosting compact neural networks. Yet, most of
the KD researches focus on Convolutional Neural Networks
(CNNs) with regular data as input instances, while little at-
tention has been devoted to Graph Neural Networks (GNNs)
that are capable of processing irregular data. A significant
discrepancy is that GNNs involve the topological informa-
tion into the updating of feature embeddings across network
layers, which is not taken into account in the existing KD
schemes, restricting their potential extensions to GNNs.

A recent work, termed LSP [Yang et al., 2020], proposed
to combine KD with GNNs by transferring the local struc-

ture, which is modeled as the distribution of the similarity
of connected node pairs, from a pre-trained teacher GNN to
a light-weight student GNN. However, there exists a major
concern on the selection of qualified teacher GNN models.
On the one hand, it’s likely to cause performance degrada-
tion once improper teacher networks are selected [Tian et al.,
2019]. On the another hand, the performance of GNNs is not
always indicated by their model capacity due to the issues
of over-smoothing [Li et al., 2018] and over-fitting [Rong
et al., 2019], which have caused obstacles to train over-
parameterized and powerful GNNs. As a result, every time
encountering a new learning task, one may spend substantial
efforts in searching for a qualified GNN architecture to work
as a teacher model, and thus the generalization ability of this
method remains a challenge. Another barrier of the adopted
conventional teacher-student framework is the inefficiency in
the training process. Such distillation pipeline usually re-
quires two steps: first, pre-training a relatively heavy model,
and second, transferring the forward predictions (or trans-
formed features) of the teacher model to the student model.
With the assistance of the teacher model, the training cost
would tremendously increase more than twice than an ordi-
nary training procedure.

In this work, we resort to cope with these issues via the
self-distillation techniques (or termed teacher-free distilla-
tion), which perform knowledge extraction and transfer be-
tween layers of a single network without the assistance from
auxiliary models [Zhang et al., 2019; Hou et al., 2019]. Our
work provides the first dedicated self-distillation approach
designed for generic GNNs, named GNN-SD. The core in-
gredient of GNN-SD is motivated by the mentioned challenge
of over-smoothing, which occurs when GNNs go deeper and
lead the node features to lose their discriminative power. In-
tuitively, one may avoid such dissatisfied cases by pushing
node embeddings in deep layers to be distinguishable from
their neighbors, which is exactly the property possessed by
shallow GNN layers.

To this end, we first present the Neighborhood Discrepancy
Rate (NDR) to serve as an approximate metric in quantify-
ing the non-smoothness of the embedded graph at each GNN
layer. Under such knowledge refined by NDR, we propose
to perform knowledge self-distillation by an adaptive dis-
crepancy retaining (ADR) regularizer. The ADR regularizer
adaptively selects the target knowledge contained in shallow

ar
X

iv
:2

01
1.

02
25

5v
2

 [
cs

.L
G

]
 3

0
A

pr
 2

02
1

wxs
高亮

layers as the supervision signal and retains it to deeper lay-
ers. Furthermore, we summarize a generic GNN-SD frame-
work that could be exploited to derive other distillation strate-
gies. As an instance, we extend GNN-SD to involve another
knowledge source of compact graph embedding for better
matching the requirements of graph classification tasks. In
a nutshell, our main contributions are:

• We present GNN-SD, to our knowledge, the first generic
framework designed for distilling the graph neural net-
works with no assistance from extra teacher models. It
serves as a drop-in replacement of the standard training
process to improve the training dynamics.

• We introduce a simple yet efficient metric of NDR to re-
fine the knowledge from each GNN layer. Based on it,
the ADR regularizer is proposed to empower the adap-
tive knowledge transfer inside a single GNN model.

• We validate the effectiveness and generalization ability
of our GNN-SD by conducting experiments on multiple
popular GNN models, yielding the state-of-the-art dis-
tillation result and consistent performance improvement
against baselines.

2 Related Work
Graph Neural Network Recently, Graph Neural Networks
(GNNs), which propose to perform message passing across
nodes in the graph and updating their representation, has
achieved great success on various tasks with irregular data,
such as node classification, protein property prediction to
name a few. Working as a crucial tool for graph representa-
tion learning, however, these models encounter the challenge
of over-smoothing. It says that the representations of the
nodes in GNNs would converge to a stationary point and be-
come indistinguishable from each other when the number of
layers in GNNs increases. This phenomenon limits the depth
of the GNNs and thus hinders their representation power.

One solution to alleviate this problem is to design network
architectures that can better memorize and utilize the initial
node features. Representative papers includes GCN [Kipf and
Welling, 2016], JKNet [Xu et al., 2018b] DeeperGCN [Li
et al., 2020], GCNII [Chen et al., 2020b], etc. On the
other hand, methods like DropEdge [Rong et al., 2019] and
AdaEdge [Chen et al., 2020a] have proposed solutions from
the view of conducting data augmentation.

In this paper, we design a distillation approach tailored for
GNNs, which also provides a feasible solution to this prob-
lem. Somewhat related, Chen et al. [2020a] proposed a reg-
ularizer to the training loss, which simply forces the nodes in
the last GNN layer to obtain a large distance between remote
nodes and their neighboring nodes. However, it can only ob-
tain a slight performance improvement.

Teacher-Student Knowledge Distillation Knowledge dis-
tillation [Hinton et al., 2015], aims at transferring the knowl-
edge hidden in the target network (i.e. teacher model) into
the online network (i.e. student model) that is typically
light-weight, so that the student achieves better performance
compared with the one trained in an ordinary way. Gener-
ally, there exist two technical routes for KD. The first one is

closely related to label smoothing [Yuan et al., 2020], which
utilizes the output distribution of the teacher model to serve
as a smooth label for training the student. Another line of re-
search is termed as feature distillation [Romero et al., 2014;
Zagoruyko and Komodakis, 2016; Kim et al., 2018], which
exploits the semantic information contained in the interme-
diate representations. As summarized in [Heo et al., 2019],
with different concerning knowledge to distill, these methods
can be distinguished by the formulation of feature transfor-
mation and knowledge matching loss function.

Recently, Yang et al. [2020] studied the teacher-student
distillation methods in training GNNs. They extract the
knowledge of local graph structure based on the similarity
of connected node pairs from the teacher model and stu-
dent model, then perform distillation by forcing the student
model to match such knowledge. However, the performance
improvement resulted from the teacher-student distillation
framework does not come with a free price, as discussed in
Section 1.
Self-Distillation For addressing the issues of the teacher-
student framework, a new research area termed teacher-free
distillation, or self-distillation, attracts a surge of attention re-
cently. Throughout this work, we refer this notion to the KD
techniques that perform knowledge refining and transfer be-
tween network layers inside a single model. In this way, the
distillation learning could be conducted with a single forward
propagation in each training iteration. BYOT [Zhang et al.,
2019] proposed the first self-distillation method. They con-
sider that the teacher and student are composed in the same
networks since the deeper part of the networks can extract
more semantic information than the shallow one. Naturally,
they manage to distill feature representations as well as the
smooth label from deeper layers into the shallow layers. Sim-
ilarly, Hou et al. [2019] proposed to distill the attention fea-
ture maps from the deep layers to shallow ones for lane de-
tection. However, these methods focus on the application of
CNNs, neglecting the usage of graph topology information,
and thus restricting their potential extension to GNNs.

3 GNN Self-Distillation
A straightforward solution to perform self-distillation for
training GNNs is to supervise the hidden states of shallow
layers by the ones of deep layers as the target, as the scheme
proposed in BYOT [Zhang et al., 2019]. However, we em-
pirically find that such a strategy leads to performance degra-
dation. It’s on the one hand attributed to the neglection of
the graph topological information. On the other hand, it’s too
burdensome for shallow GNN layers to match their outputs
to such unrefined knowledge and eventually leads to over-
regularizing. Furthermore, such a simple solution requires
fixed representation dimensionalities across network layers,
which limits its applications to generic GNN models. In the
following sections, we first introduce the key ingredient of
our GNN Self-Distillation (GNN-SD). Then we summarize a
unified GNN-SD framework that is well extendable to other
distillation variants.
Notation Throughout this work, a graph is represented as
G = {V, E ,A}, where V is vertex set that has N nodes with

wxs
高亮

0.21

𝐬(2)

3

MP1 MP2 MP3 MP4 Predictor ෝ𝒚

Neighborhood Discrepancy Rate

0.13 0.40 0.52 0.29

Dissimilarity:

S𝑣3= 0.81

Neighborhood Discrepancy Rate (NDR)

Mean

𝑿𝒗𝟑

𝑫−𝟏𝑨𝑿
𝒗𝟑

𝑣2

𝑣1

𝑣4
𝑣3

𝑣5𝐬 𝑙+1 -𝐬 𝑙
𝟐

𝟐

𝟎

Adaptive Discrepancy Retaining (ADR) Regularizer

2 = argmax
𝑙

𝐬(𝑙)

Determine the initial

target position：
For 𝒍 ≥ 𝟐，make

comparison:

if 𝐬(𝑙) > 𝐬(𝑙+1)

Yes

No

ℒ𝐀𝐃𝐑

Graph Neural Network

ℒ𝑪𝑬

𝐷𝐾𝐿(ෝ𝒚||𝒚)

𝐬(1) 𝐬(3) 𝐬(4)

𝐗(1) 𝐗(2) 𝐗(3) 𝐗(4)

𝐗(0)

𝐀

0.53 0.55 0.62 0.63 0.420.75 0.81 0.66 0.59 0.830.12 0.73 0.21 0.36 0.45

Legend

Forward Propagation

Knowledge Refining

Loss Calculation

Initial Target Position

MP: Message Passing

𝐗: Node Hidden States

𝐀: Adjacency Matrix

𝐬: Discrepancy Rate

ddVector

S𝑣: Discrepancy Rate

dddof Node 𝑣

Figure 1: The schemata of the distillation strategy of adaptive discrepancy retaining. A four-layer GNN is adopted for the illustration.

d-dimension features of X ∈ RN×d, edge set E of size M
is encoded with edge features of E, and A ∈ RN×N is the
adjacency matrix. The node degree matrix is given by D =
diag(A1N). Node hidden states of l-th GNN layer is denoted
as X(l), and the initial hidden states X(0) is usually set as the
node intrinsic features X. Given a node v, its connected-
neighbors are denoted asNv . For a matrix X, Xi· denotes its
i-th row and X·j denotes its j-th column.

3.1 Adaptive Discrepancy Retaining
Since the well-known over-smoothing issue of GNNs occurs
when the input graph data flows into deep layers, an inspired
insight is that we can utilize the property of non-smoothness
in shallow GNN layers, and distill such knowledge into deep
ones. In this way, the model is self-guided to retain non-
smoothness from the initial embedded graph to the final em-
bedded output. The remained questions are: how to refine the
desired knowledge from the fine-grained node embeddings?
and what is a proper knowledge transfer strategy?

Neighborhood Discrepancy Rate To answer the first ques-
tion, we introduce the module of Neighborhood Discrepancy
Rate (NDR), which is used to quantify the non-smoothness of
each GNN layer.

It’s proved that nodes in a graph component converge to
the same stationary point while iteratively updating the mes-
sage passing process of GNNs, and hence the hidden states of
connected-nodes become indistinguishable [Li et al., 2018].
It implies that, given a node v in the graph,∑

c∈Nv

‖X(l)
v· −X

(l)
c· ‖p < ε, if l→∞,∀ε > 0. (1)

As a result, it leads to the issue of over-smoothing and further
hurts the accuracy of node classification. Centering around
this conclusion, it is a natural choice to use the pair-wise
metric (and the resulting distance matrix) to define the local
non-smoothness of the embedded graph. However, such fine-
grained knowledge might still cause over-regularization for
GNNs trained under teacher-free distillation. By introduc-
ing the following proposition (details deferred to Appendix

A), one can easily derive from formula (1) that, ‖X(l)
v· −

(D−1AX)
(l)
v· ‖p < ε as layer l goes to infinity.

Proposition 1. Suppose d1(X,G) calculates the Lp-norm
of the difference of each central node and their aggregated
neighbors in the graph G, and the pair-wise distance metric
d2(X,G), on the other hand, computes the difference at the
level of node pairs. Then, the inequality holds: d2(X,G) ≥
d1(X,G).
We leverage this property to refine the knowledge from a
higher level. Specifically, given a central node v in layer l,
we first obtain the aggregation of its adjacent nodes to work
as the virtual node that indicates its overall neighborhood,
N

(l)
v = (D−1AX(l))v·. For excluding the effect of embed-

dings’ magnitude, we use the cosine similarity between the
embeddings of central node X(l)

v· and virtual node N(l)
v to cal-

culate their affinity, and transform it into a distance metric,

S(l)
v = 1− X

(l)
v· (AX(l))T

v·

||X(l)
v· ||2 · ||(AX(l))v·||2

, v = 1, ..., N, (2)

Note that it’s not needed to perform the inverse matrix multi-
plication of node degrees due to the normalization conducted
by cosine similarity metric. The defined S

(l)
v of all nodes

compose the neighborhood discrepancy rate of layer l:

s(l) = (S
(l)
1 , ..., S

(l)
N). (3)

Compared with the pair-wise metric, the NDR extracts
neighbor-wise non-smoothness, which is easier to transfer
and prevents over-regularizing by self-distillation. More-
over, it can be easily implemented with two consecutive ma-
trix multiplication operations, enjoying a significant compu-
tational advantage. The NDR also possesses better flexibility
to model local non-smoothness of the graph, since pair-wise
metrics can not be naturally applied together with layer-wise
sampling techniques [Chen et al., 2018; Huang et al., 2018].

Specially, for the task of node classification, there is
another reasonable formulation of the virtual neighboring
node. That is, taking node labels into account, N

(l)
v =

wxs
在文本上注释
自蒸馏：将浅层的非平滑的属性作为知识蒸馏到深层的网络

wxs
在文本上注释
计算节点v和它聚合了邻居节点表示的余弦相似度，再用1-cos，得到邻居差异比率

(D−1A
′
X(l))v·, where A

′
= A � Y denotes the masked

adjacency, Y ∈ RN×N the binary matrix with entries Yi,j

equal to 1 if node i and j are adjacent and belong to different
categories, and � the element-wise multiplication operator.
Then, the NDR would not count the discrepancy of nodes that
are supposed to share high similarity. For unity and simplic-
ity, we still use the former definition throughout this work.

Strategy for Retaining Neighborhood Discrepancy Pre-
vious self-distillation methods usually treat the deep repre-
sentations as the target supervision signals, since they are
considered to contain more semantic information. However,
we found that such a strategy is not optimal, sometimes even
detrimental for training GNNs (refer to Appendix D for de-
tails). The rationale behind our design of distilling neigh-
borhood discrepancy is to retain the non-smoothness, which
is extracted as the knowledge by NDR, from shallow GNN
layers to the deep ones. In details, we design the following
guidelines (refer to Appendix F for more analysis) for the
self-distillation learning, which formulate our adaptive dis-
crepancy retaining (ADR) regularizer:

• The noise in shallow network layers might cause the cal-
culated NDR of the first few embedded graphs to be in-
accurate, thus the initial supervision target is adaptively
determined by the magnitude of the calculated NDR.

• For facilitating the distillation learning, the knowledge
transfer should be progressive. Hence, the ADR loss is
computed by matching the NDR of deep layer (online
layer) to the target one of its previous layer (target layer).

• Explicit and adaptive teacher selection is performed, i.e
the ADR regularizes the GNN only when the magnitude
of NDR of the target layer is larger than the online layer.

• Considering that the nodes in regions of different con-
nected densities have different rates of becoming over-
smoothing [Li et al., 2018], the matching loss can be
weighted by the normalized node degrees to emphasize
such a difference.

As a result, the final ADR regularizer is defined as:

LN =
∑

l=l?,...,L−1

1(‖s(l)‖>‖s(l+1)‖)d2(s(l+1), s(l)), (4)

where the indicator function 1(·) performs the teacher selec-
tion, l? = argmaxk{‖s(k)‖|k ∈ {1, ..., L−1}} determine the
position of initial supervision target, and d2(s(l+1), s(l)) =
‖D(s(l+1) − SG(s(l)))T‖22 is the degree-weighted mean
squared error function that calculates the knowledge match-
ing loss. Here SG(·) denotes the Stop Gradient operation,
meaning that the gradient of the target NDR tensor is de-
tached in the implementation, for serving as a supervision
signal. The approach is depicted in Figure 1.

In addition, we analytically demonstrate that the proposed
notion of discrepancy retaining can be comprehended from
the perspective of information theory. This is analogous to
the concept in [Ahn et al., 2019]. Specifically, the retain-
ing of neighborhood discrepancy rate encourages the online
layer to share high mutual information with the target layer,
as illustrated in the following proposition (I stands for mutual

information andH denotes the entropy, details are deferred to
Appendix B).
Proposition 2. The optimization of the ADR loss increase
the lower bound of the mutual information between the tar-
get NDR and the online one. That is, the inequality holds:
I(s(l), s(l+1)) ≥ H(s(l))−Es(l),s(l+1) [‖D(s(l+1)−s(l))T‖22].

3.2 Generic GNN-SD Framework
Generally, by refining and transferring compact and informa-
tive knowledge between layers, self-distillation on GNNs can
be summarized as the learning of the additional mapping,

Mg,L
SD : Ts(Cs(G, Ps))→ Tt(Ct(G, Pt)), (5)

where P ∈ {1, ..., L} is the layer position to extract knowl-
edge from the network, C denotes the granularity (or coarse-
ness) of the embedded graph, T represents the specific trans-
formation applied to the chosen embeddings, and the sub-
scripts of s and t denote the identity of student (to simulate)
and teacher (to transfer), respectively.

Naturally, the combinations of different granularities and
transformation functions lead to various distilled knowledge.
As an instance, we show here to involve another knowledge
source of the full-graph embedding, and provide further dis-
cussions in Appendix E for completeness.

Considering the scenario of graph classification, where
GNNs might focus more on obtaining meaningful embedding
of the entire graph than individual nodes, the full-graph em-
bedding could be the well-suited knowledge, since it provides
a global view of the embedded graph (while the NDR cap-
tures the local property),

C(G,P) := G(P) = Readoutv∈G(X
(P)
v·), (6)

where Readout is a permutation invariant operator that ag-
gregates embedded nodes to a single embedding vector. In
contrast to the fine-grained node features, the coarse-grained
graph embedding is sufficiently compact so as we can simply
use the identity function to preserve the transferred knowl-
edge. Hence the target mapping is:

Mg,L
graph : 1(G(l+1))→ 1(G(l)). (7)

It can be learned by optimizing the graph-level distilling loss:

LG =
∑

l=1,...,L−1
||G(l+1) − SG(G(l))||22. (8)

In this way, GNN-SD extends the utilization of mixed knowl-
edge sources over different granularities of the embedded
graph.
Overall Loss The total loss function is formulated as:

LT = CE(g(X(L)), y) + αLL + βLN + γLG. (9)

The first term calculates the basic cross entropy loss between
the final predicted distribution and the ground-truth label y.
The second term, borrowing from [Zhang et al., 2019], regu-
larizes the intermediate logits generated by intermediate lay-
ers to mimic the final predicted distribution for accelerating
the training and improving the capacity of shallow layers.
The remaining terms are defined in Eq.(4) and Eq.(8). α, β,
and γ are the hyper-parameters that balance the supervision
of the distilling objectives and target label.

wxs
高亮

wxs
在文本上注释
计算当前层的NDR和前一层的NDR，二者的差值作为ADR loss

0 50 100 150 200 250 300
Training Epoch

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

ND
R

(a) NDR Curves
layer 1
layer 1 w/ GNN-SD
layer 2
layer 2 w/ GNN-SD
layer 3
layer 3 w/ GNN-SD
layer 4
layer 4 w/ GNN-SD

0 1e0 1e1 1e2 3e2
ADR loss weight

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Co
nv

er
ge

d
ND

R

(b) Test Acc. w.r.t converged NDR

0 100 200 300 400 500
Training Epoch

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Va
lid

at
io

n
Lo

ss

(c) Validation Loss
GAT-2
GAT-2 w/ GNN-SD
GAT-4
GAT-4 w/ GNN-SD
GAT-6
GAT-6 w/ GNN-SD
GAT-8
GAT-8 w/ GNN-SD

80

81

82

83

84

85

Te
st

 A
cc

ur
ac

y

Test accuracy
Baseline (w/o GNN-SD)
NDR of final layer

Figure 2: (a) Comparison of NDR between training w/ (solid line) and w/o (dotted line) imposing ADR regularizer. Smaller value means
suffering from more over-smoothing. (b) The correlation between test accuracy and converged NDR of the final layer, controlled by the loss
weights of ADR regularizer. (c) Comparison of validation loss curves. GAT-n denotes GAT model with n hidden layers.

4 Experiments
4.1 Exploring Analysis of Discrepancy Retaining
We first conduct exploring analysis to investigate how the
ADR regularizer helps improve the training dynamics of
GNNs. Hyper-parameters of α and γ are fixed to 0.

In Figure 2(a), we show the comparison of NDR curves of
each layer in a 4-layer GraphSage [Hamilton et al., 2017]. In
line with the expectations, the neighborhood discrepancy in a
GNN model drops when the layer grows, and the final layer
(in dark blue, dotted line) approaches a close-to-zero value
of NDR, which indicates that the output node embeddings
become indistinguishable with their neighbors. Conversely,
the GNN trained with GNN-SD preserves higher discrepancy
over shallow to deep layers, and even reveals an increasing
tendency as the training progresses. It might imply that the
GNN gradually learns to pull the connected-node embeddings
away if they’re not of the same class, for obtaining more gen-
eralized representations. This observation indicates ADR’s
effect on alleviating the over-smoothing issue. We also pro-
vide related examples in Appendix F that motivate the devel-
opment of ADR regularizer.

In Figure 2(b), we study the correlation of model perfor-
mance and the converged NDR: as the ADR loss weight in-
creases in a reasonable range (e.g. from 1e0 to 1e2), the NDR
increases and the performance gain improves (from 0.6% to
2.5%). The shown positive correlation between test accu-
racy and NDR verifies the rationality of the NDR metric and
the distillation strategy as well. Notably, there also exists a
trade-off in determining the optimal loss weight. If an over-
estimated weight (1e3) was assigned, the knowledge transfer
task would become too burdensome for the GNN model to
learn the main classification task and hurt the performance.

Figure 2(c) depicts the validation loss on GAT [Veličković
et al., 2018] backbones with different depths. The valida-
tion loss curves are dramatically pulled down after applying
GNN-SD. It explains that ADR regularizer also helps GNNs
relieve the issue of over-fitting, which is known as another
tough obstacle in training deep GNNs.

4.2 Comparison with KD Methods
We compare our method with other distillation meth-
ods, including AT [Zagoruyko and Komodakis, 2016], Fit-
Net [Romero et al., 2014], BYOT [Zhang et al., 2019] and
LSP [Yang et al., 2020]. We follow [Yang et al., 2020] to

Table 1: Performance comparison with other distillation methods.
The second column indicates the knowledge source, X is node fea-
tures, A is the adjacency matrix, T (·) denotes the teacher model.

Method Knowledge Source F1 Score Time
Teacher (T) / 97.6 0.85s

Baseline / 95.7 0.62s
AT T (X) 95.4 1.75s

FitNet T (X) 95.6 1.99s
LSP T (X),T (A) 96.1 1.90s

Baseline / 95.61±0.20 0.62s
AT X 95.88±0.25 0.73s

FitNet X 95.60±0.17 0.95s
BYOT X 95.81±0.56 0.80s

GNN-SD X,A 96.20±0.03 0.87s

perform the comparisons on the baseline of a 5-layer GAT
on the PPI dataset [Zitnik and Leskovec, 2017]. For evalu-
ating AT and FitNet in a teacher-free KD scheme, we follow
their papers to perform transformations on node embeddings
to get the attention maps and intermediate features, respec-
tively. We also evaluate BYOT to see the effect of interme-
diate logits. The experiments are conducted for 4 runs, and
those under teacher-student framework are cited from [Yang
et al., 2020]. For our method, the hyper-parameters of α and
β are both set to 0.01 and γ is 0. Training time (per epoch) of
each model is measured on a NVIDIA 2080 Ti GPU. Results
are summarized in Table 1. More details are deferred to Ap-
pendix G. Clearly, GNN-SD obtains significant performance
promotion against other self-distillation methods by involv-
ing the topological information into the refined knowledge.
GNN-SD also achieves a better performance gain (0.59) on
the baseline compared with LSP (0.4), even when our method
does not require the assistance from an extra teacher model.
In this way, the training cost is greatly saved (40% training
time increase against baseline for GNN-SD v.s. 190% in-
crease for LSP). Besides, it avoids the process of selecting
qualified teachers, bringing much better usability.

4.3 Overall Comparison Results
Node Classification Table 2 summarizes the results of
GNNs with various depths on the citation classification
datasets, including Cora, Citeseer and PubMed [Sen et al.,
2008]. We follow the setting of semi-supervised learning,
using the fixed 20 nodes per class for training. The hyper-
parameters of γ is fixed to 0 for node classification, and we

Table 2: Node classification on varying-depths models.

Dataset Model Layers
2 4 8 16

Cora

GAT 83.2 80.1 76.9 74.8
GAT w/ GNN-SD 83.7 81.2 80.1 77.6

GraphSage 81.3 80.3 78.8 77.2
GraphSage w/ GNN-SD 81.7 81.5 79.8 78.2

Citeseer

GAT 72.5 70.5 65.1 64.5
GAT w/ GNN-SD 72.6 71.5 68.3 66.2

GraphSage 72.3 70.7 61.7 59.2
GraphSage w/ GNN-SD 72.7 71.0 64.5 61.8

Pubmed

GAT 79.2 78.5 76.6 75.6
GAT w/ GNN-SD 79.5 79.4 78.5 76.6

GraphSage 78.8 77.9 73.8 77.2
GraphSage w/ GNN-SD 79.2 79.4 77.6 78.2

determine α and β via a simple grid search. Details are pro-
vided in Appendix H. It’s observed that GNN-SD consistently
improves the test accuracy for all cases. Generally, GNN-
SD yields larger improvement for deeper architecture, as it
gains 0.5% average improvement for a two-layer GAT on
Cora while achieving 3.2% increase for the 8-layer one.

Graph Classification Table 3 summarizes the results of
various popular GNNs on the graph kernel classification
datasets, including ENZYMES, DD, and PROTEINS in TU
dataset [Kersting et al., 2016]. Since there exist no default
splittings, each experiment is conducted by 10-fold cross vali-
dation with the splits ratio at 8:1:1 for training, validating and
testing. We choose five widely-used GNN models, includ-
ing GCN, GAT, GraphSage, GIN [Xu et al., 2018a] and Gat-
edGCN [Bresson and Laurent, 2017], to work as the evalua-
tion baselines. Hyper-parameter settings are deferred to Ap-
pendix I. Again, one can observe that GNN-SD achieves con-
sistent and considerable performance enhancement against all
the baselines. On classification of PROTEINS, for example,
even the next to last model trained with GNN-SD (Graph-
Sage, 76.71%) outperforms the best model (GAT, 76.36%)
trained in the ordinary way. The results further validate the
generalization ability of our self-distilling strategy.

Table 3: Graph classification on various GNN backbones. The top 2
models on each dataset are bolded.

Dataset Model Baseline w/ GNN-SD Gain

ENZYMES

GCN 64.00±5.63 66.66±3.94 (+2.66)
GAT 65.33±5.90 68.00±2.66 (+2.66)

GraphSage 68.33±6.41 70.00±5.05 (+1.66)
GIN 66.00±7.19 69.33±4.02 (+3.33)

GatedGCN 65.33±4.52 67.33±1.33 (+2.00)

DD

GCN 77.83±1.02 78.67±1.68 (+0.84)
GAT 76.65±2.51 77.50±2.50 (+0.85)

GraphSage 76.14±1.66 77.49±1.89 (+1.35)
GIN 73.00±3.90 74.77±3.50 (+1.77)

GatedGCN 77.83±1.67 78.20±1.98 (+0.37)

PROTEINS

GCN 75.55±2.91 76.81±3.19 (+1.26)
GAT 76.36±2.77 77.53±3.38 (+1.17)

GraphSage 75.55±4.02 76.71±3.81 (+1.15)
GIN 64.86±3.03 70.06±4.89 (+5.20)

GatedGCN 76.36±3.94 76.90±3.68 (+0.54)

Table 4: Compatibility study. Experiments are conducted under the
full-supervised scheme, following DropEdge’s implementation.

Models Layers
8 16 32 50

Baseline 78.1±0.9 79.1±1.1 79.3±0.8 78.4±1.1
w/ DropEdge 79.4±0.7 79.3±0.9 79.4±1.2 78.7±0.9
w/ GNN-SD 79.1±0.8 79.9±0.5 79.7±1.1 79.2±0.8

w/ Both 80.1±0.6 79.6±0.8 80.2±0.8 79.6±0.5

Compatibility Evaluation There exist other methods that
aim at facilitating the training of GNNs. One influential work
is DropEdge [Rong et al., 2019], which randomly samples
graph edges to introduce data augmentation. We conduct ex-
periments on JKNet [Xu et al., 2018b] and Citeseer dataset
to evaluate the compatibility of these orthogonal training
schemes. The edge sampling ratio in DropEdge is searched
at the range of {0.1, ..., 0.9}, with results demonstrated in Ta-
ble 4. It reads that while both GNN-SD and DropEdge are
capable of improving the training, GNN-SD might perform
better on deep backbones. Notably, employing them concur-
rently is likely to deliver further promising enhancement.

Table 5: Ablation study of different knowledge sources.

GNN-B GNN-L GNN-N GNN-G GNN-M
LL

√ √ √

LN
√ √ √

LG
√ √

Cora 80.12 79.83 80.83 / 81.16 /
Citeseer 70.53 71.16 71.43 / 71.52 /
Pubmed 78.52 78.53 79.44 / 79.26 /

ENZYMES 66.00 66.66 67.66 67.66 66.66 69.33
DD 73.00 73.76 74.77 73.51 73.76 74.14

4.4 Ablation Studies
We perform an ablation study to evaluate the knowledge
sources and identify the effectiveness of our core technique,
as shown in Table 5. We select GAT as the evaluation back-
bone for node classification and GIN for graph classification.
We name the baseline as ‘GNN-B’, and model solely distilled
by intermediate logits [Zhang et al., 2019], neighborhood dis-
crepancy, and compact graph embedding as ‘GNN-L’, ‘GNN-
N’, ‘GNN-G’, respectively. The models distilled by mixed
knowledge are represented as ‘GNN-M’. One observation
from the results is that simply adopting the intermediate log-
its seems to fail in bring consistent improvement (highlighted
in gray), while it may cooperate well with other sources since
it promotes the updating of shallow features (highlighted in
blue). In contrast, the discrepancy retaining plays the most
important role in distillation training. For graph classifica-
tions, the involvement of compact graph embedding also con-
tributes well while jointly works with the others.

5 Conclusion
We have presented an efficient yet generic GNN Self-
Distillation (GNN-SD) framework tailored for boosting GNN
performance. Experiments verify that it achieves state-of-the-
art distillation performance. Meanwhile, serving as a drop-in
replacement of the standard training process, it yields consis-
tent and considerable enhancement on various GNN models.

References
[Ahn et al., 2019] Sungsoo Ahn, Shell Xu Hu, Andreas

Damianou, Neil D Lawrence, and Zhenwen Dai. Varia-
tional information distillation for knowledge transfer. In
CVPR, pages 9163–9171, 2019. 4

[Bresson and Laurent, 2017] Xavier Bresson and Thomas
Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017. 6

[Chen et al., 2018] Jie Chen, Tengfei Ma, and Cao Xiao.
Fastgcn: Fast learning with graph convolutional networks
via importance sampling. In ICLR, 2018. 3

[Chen et al., 2020a] Deli Chen, Yankai Lin, Wei Li, Peng
Li, Jie Zhou, and Xu Sun. Measuring and relieving the
over-smoothing problem for graph neural networks from
the topological view. In AAAI, pages 3438–3445, 2020. 2

[Chen et al., 2020b] Ming Chen, Zhewei Wei, Zengfeng
Huang, Bolin Ding, and Yaliang Li. Simple and
deep graph convolutional networks. arXiv preprint
arXiv:2007.02133, 2020. 2

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In NIPS, pages 1024–1034, 2017. 5

[Heo et al., 2019] Byeongho Heo, Jeesoo Kim, Sangdoo
Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi.
A comprehensive overhaul of feature distillation. arXiv
preprint arXiv:1904.01866, 2019. 2

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015. 2

[Hou et al., 2019] Yuenan Hou, Zheng Ma, Chunxiao Liu,
and Chen Change Loy. Learning lightweight lane detec-
tion cnns by self attention distillation. In IEEE ICCV,
pages 1013–1021, 2019. 1, 2

[Huang et al., 2018] Wenbing Huang, Tong Zhang,
Yu Rong, and Junzhou Huang. Adaptive sampling
towards fast graph representation learning. NIPS,
31:4558–4567, 2018. 3

[Kersting et al., 2016] Kristian Kersting, Nils M. Kriege,
Christopher Morris, Petra Mutzel, and Marion Neumann.
Benchmark data sets for graph kernels, 2016. 6

[Kim et al., 2018] Jangho Kim, SeongUk Park, and Nojun
Kwak. Paraphrasing complex network: Network compres-
sion via factor transfer. In NeurIPS, 2018. 2

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 12

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 2

[Li et al., 2018] Qimai Li, Zhichao Han, and Xiao-Ming
Wu. Deeper insights into graph convolutional net-
works for semi-supervised learning. arXiv preprint
arXiv:1801.07606, 2018. 1, 3, 4

[Li et al., 2020] Guohao Li, Chenxin Xiong, Ali Thabet, and
Bernard Ghanem. Deepergcn: All you need to train deeper
gcns. arXiv preprint arXiv:2006.07739, 2020. 2

[Romero et al., 2014] Adriana Romero, Nicolas Ballas,
Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta,
and Yoshua Bengio. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550, 2014. 2, 5

[Rong et al., 2019] Yu Rong, Wenbing Huang, Tingyang Xu,
and Junzhou Huang. Dropedge: Towards deep graph con-
volutional networks on node classification. In ICLR, 2019.
1, 2, 6

[Sen et al., 2008] Prithviraj Sen, Galileo Namata, Mustafa
Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine,
29(3):93–93, 2008. 5

[Tian et al., 2019] Yonglong Tian, Dilip Krishnan, and
Phillip Isola. Contrastive representation distillation. In
ICLR, 2019. 1

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In ICLR, 2018.
5

[Wang and et al., 2019] Minjie Wang and et al. Deep graph
library: Towards efficient and scalable deep learning on
graphs. 2019. 8

[Xu et al., 2018a] Keyulu Xu, Weihua Hu, Jure Leskovec,
and Stefanie Jegelka. How powerful are graph neural net-
works? In ICLR, 2018. 6

[Xu et al., 2018b] Keyulu Xu, Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping
knowledge networks. In ICML, 2018. 2, 6

[Yang et al., 2020] Yiding Yang, Jiayan Qiu, Mingli Song,
Dacheng Tao, and Xinchao Wang. Distilling knowledge
from graph convolutional networks. In CVPR, pages
7074–7083, 2020. 1, 2, 5

[Yuan et al., 2020] Li Yuan, Francis EH Tay, Guilin Li, Tao
Wang, and Jiashi Feng. Revisiting knowledge distillation
via label smoothing regularization. In CVPR, pages 3903–
3911, 2020. 2

[Zagoruyko and Komodakis, 2016] Sergey Zagoruyko and
Nikos Komodakis. Paying more attention to attention: Im-
proving the performance of convolutional neural networks
via attention transfer. arXiv preprint arXiv:1612.03928,
2016. 2, 5

[Zhang et al., 2019] Linfeng Zhang, Jiebo Song, Anni Gao,
Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be your
own teacher: Improve the performance of convolutional
neural networks via self distillation. In IEEE ICCV, pages
3713–3722, 2019. 1, 2, 4, 5, 6

[Zitnik and Leskovec, 2017] Marinka Zitnik and Jure
Leskovec. Predicting multicellular function through
multi-layer tissue networks. Bioinformatics, 33(14):i190–
i198, 2017. 5

Appendix

A Proof of Proposition 1
For simplicity, here we use the Lp-norm to measure the vector difference. Pair-wise distance metric d2(X,G) calculates the
total sum of all node pairs dissimilarity, as follows:

d2(X,G) =
1

|E|
∑
v∈V

∑
c∈N (v)

||Xv· −Xc·||p

≥ 1

|E|
∑
v∈V
||
∑

c∈N (v)

(Xv· −Xc·)||p

=
1

|E|
∑
v∈V
||Dv,v(Xv· −

(AX)v·
Dv,v

)||p

≥ 1

|E|
∑
v∈V
||Xv· − (D−1AX)v·||p (10)

The RHS of the last inequality computes the sum of dissimilarity between nodes and their 1-hop aggregated neighbors, formu-
lating the neighbor-wise distance d1(X,G). The proof is concluded.

B Proof of Proposition 2
The mutual information between the NDR of consecutive layers is defined as:

I(s(l), s(l+1)) = H(s(l))−H(s(l)|s(l+1))

= −Es(l) [logp(s
(l))] +Es(l),s(l+1) [logp(s(l)|s(l+1))], (11)

since the true conditional probability is not intractable, we resort to the help with the variational distribution of q(s(l)|s(l+1))
that approximates p(s(l)|s(l+1)), and study the lower bound of the mutual information. Continuing from formula (11),

I(s(l), s(l+1)) = H(s(l)) +Es(l),s(l+1) [logp(s(l)|s(l+1))]

= H(s(l)) +Es(l),s(l+1) [logq(s(l)|s(l+1))] +Es(l) [DKL(p(s
(l)|s(l+1))||q(s(l)|s(l+1)))]

≥ H(s(l)) +Es(l),s(l+1) [logq(s(l)|s(l+1))], (12)

here we can adopt the Gaussian distribution with heteroscedastic expectation µ = s(l+1) and variance σ = 1N
TD as the

variational distribution. And it’s assumed with the property that NDR of nodes are conditionally independent given the ones
of subsequent layer. That is, q(s(l)|s(l+1)) =

∏
v q(S

(l)
v)|S(l+1)

v) =
∏
v

1
Dv,v

√
2π

exp(− (S(l)
v −S

(l+1)
v)2

2D2
v,v

). Then, the logarithm of
variational distribution is expressed as:

logq(s(l)|s(l+1)) =
∑

v=1,...,N

logq(S(l)
v |S(l+1)

v)

=
∑

v=1,...,N

−log 1

Dv,v
− (S

(l)
v − S(l+1)

v)2

1/Dv,v
+ constant. (13)

Since the node degree Dv,v is fixed and −log 1
Dv,v

is greater than zero, then combining equation (12) and (13) leads to:

I(s(l), s(l+1)) ≥ H(s(l))−Es(l),s(l+1) [‖D(s(l+1) − s(l))T‖22]. (14)

The proof is concluded.

C Experimental Environments
Most experiments conducted in this paper are run on a NVIDIA 2080 Ti GPU with 11 GB memory, except for very-deep GNNs,
which are conducted on a NVIDIA Tesla P40 with 24GB memory. Experiments are mainly implemented by PyTorch of version
1.3.1 and DGL [Wang and et al., 2019] of version 0.4.2.

D Comparison on Two Supervision Schemes of Retaining NDR
Table 6 compares the results of two supervision schemes: Transferring the NDR of shallow layers to deep ones and the reverse
strategy. Since the rationale of our design is to retain high neighborhood discrepancy from shallow layers to deep layers, the
common strategy for CNN models that transfers knowledge from deep layers to shallow layers is not the desired scheme for
conducting GNN-SD. One can see that performing neighborhood discrepancy retaining by serving the NDR of deep embeddings
as supervision targets is not optimal, sometimes even detrimental for GNN models. These results verify our conjecture.

Table 6: Comparison of two schemes of NDR transferring, in accuracy gain (%). Performing neighborhood discrepancy retaining by serving
the NDR of embeddings in the shallow layer as supervision signals is denoted as ‘shallow2deep’, and the other one is ‘deep2shallow’. A
3-layer GAT is selected as the baseline.

GAT Cora Citeseer Pubmed

shallow2deep +0.66 +0.73 +0.80
deep2shallow -0.52 -0.22 +0.17

E The Generic GNN Self-Distillation Framework
Recall the summarized self-distillation objective,

Mg,L
SD : Ts(Cs(G, Ps))→ Tt(Ct(G, Pt)),

the various combination of granularity settings and transformation functions leave wide space for further exploration. Generally,
the choices of granularities of a graph C(G, P) constitute the set of {X(P),E(P),SG(P),G(P)}, which is made up of: 1) fine-
grained embeddings at node and edge levels, denoted as X and E, 2) coarse-grained embeddings at full-graph and sub-graph
levels, denoted as G ∈ R1×d and SG ∈ Rs×d of:

G = Readoutv∈G(Xv·)

SGi· = Readoutv∈SGi
(Xv·), i = 1, 2, ..., s (15)

where s represents the number of partitioned sub-graphs, SGi = {Vi, Ei,Ai} is the ith sub-graph that consists of the corre-
sponding vertex and edge subsets and adjacency. The straightforward approach to generate sub-graph is to perform random
sampling schemes on the original graph. It remains an interesting problem that how to sample representative nodes in cooperate
with the distillation target.

In practice, the chosen granularity depends on the specific scenario and goal that wishes to obtain by self-distillation. The
transformation should comprise between the properties of ‘easy to learn’ and ‘avoid information missing’. In the manuscript, we
have adopted the fine-grained node embeddings X and coarse-grained full-graph embedding G to perform a mixed knowledge
self-distillation for training GNNs. The core technique of discrepancy retaining performs distillation in a progressive manner,
results in the objective instance of:

Mg,L
node : NDR(X(l+1))→ NDR(X(l)), (16)

where NDR(·) is formulated by Eq.(2) and Eq.(3). We have further involved knowledge sources of the full-graph embedding
in our GNN-SD framework, as illustrated in formula (7).

In fact, the training objective of formula (7) can be naturally extended to sub-graph level by replacing G by SG. For
applying the GNN-SD to edge features E, a simple two-step solution is to firstly transform the node-adjacency matrix A into
edge-adjacency matrix of Ae, where each element is:

[Ae]i,j =

{
1 i ∩ j 6= ∅, edge i, j share a same node
0 otherwise

(17)

and then extend the NDR to edge-level by replacing Eq.(2) with:

Sei = 1−
Ei·
>(AeE)i·

||Ei·||2 · ||(AeE)i·||2
, i = 1, ...,M. (18)

It’s worthy noting that the transformation T can not only be manually designed but learned during the training process. A
linear layer or MLP is able to facilitate the student layers to match the target knowledge, which leads formula (16), for example,
to the following variant:

Mg,L
node : NDR(f(X(Ps)))→ NDR(X(Pt)), (19)

where f denotes the learnable function. We empirically find that this technique is typically useful for distillation on large-scale
datasets and very-deep GNNs.

F Additional NDR Curves Exemplars
Figure 3 shows the NDR Curves of the 8-layer GCN and GraphSage on OGB-arxiv dataset. It’s observed that the initial
embedded graph (in light yellow) has low NDR value (in average), which might be caused by the fact that the first GNN layer
takes much more noise. In GCN, the embedded graph of the second layer (in orange) possesses the highest NDR across the
training stage, while in GraphSage it appears alternation that the third layers (in tomato) become more discriminated in the late
training stage. The above observations motivate us to adaptively select the initial target supervision signal.

Furthermore, we find that the consecutive intermediate layers could show minor overlap in the average NDR, and it doesn’t
make sense to perform knowledge retaining for the case that the target layer show lower neighborhood discrepancy than the
online layer. Thus we introduce explicit teacher selection in the ADR regularizer.

Figure 3: NDR curves of the two 8-layers GNNs. Smaller value meanssuffering from more over-smoothing.

We provide a comparison study to show the effect of the adaptive distillation strategy, with results in Table 7. Here, the ‘naive
matching’ denotes that the distillation loss is defined as LN =

∑
l=1,...,L−1 d

2(s(l+1), s(l)).

Table 7: The effect of the adaptive self-distillation.

OGB-arxiv GCN GraphSage Cora GCN GraphSage

baseline 71.84±0.18 71.12±0.38 baseline 80.67±1.14 79.28±1.91
naive matching 72.08±0.20 71.62±0.32 naive matching 82.70±0.97 79.97±1.81

adaptive matching 72.34±0.32 71.88±0.23 adaptive matching 82.92±0.89 80.31±2.35

G Details of the Comparison with Other Distillation Methods
For processing the PPI dataset, where possesss relative large scale graphs, we adopt a learnable linear layer in the knowledge
transformation function to facilitate knowledge transfer between layers, and thus the resulting distillation object is the same as
formula (19).

Table 8 describe the hyper-parameters of the teacher model used in those teacher-student KD methods, and the ones of
baseline student model. One can notice that the teacher model is set in an fatter architecture with fewer layers compared with
the student, which is not as usual in the conventional settings on CNNs. This confirms our concern about the difficulty of
selecting a qualified teacher GNN model. In Table 9, we provide the detailed four runs results of the re-implemented baseline
backbone used in LSP and our GNN-SD method.

Table 8: Settings of the baseline backbone used on the PPI dataset for comparing with LSP.

Model Layers Attention heads Hidden features #Params

Teacher (T) 3 4,4,6 256,256,121 3.64M
Baseline 5 2,2,2,2,2 68,68,68,68,121 0.16M

H Hyper-parameter Settings of the Node Classification Experiments, Table 2
Table 10 gives the description of the meaning of the hyper-parameters. We search the hyper-parameters for GNNs under varying
depths to obtain the fair and strong baselines. For generating intermediate logits, we leverage a sharing-weights 2-layer MLP
to take intermediate graph embeddings as input. Loss weight of α is searched at the range of {0, 0.001, 0.01, 0.1, 1}, β in
{0.001, 0.01, 0.1, 1, 10, 100}. Table 11 summarizes the detail settings.

Table 9: Performance comparison on the PPI dataset. The second column records the experiment results reported in the paper of LSP. In the
other columns, we report the overall running results of 4 runs of our experiments.

Method

F1 Score

Report our runnning results

Avg. (1st 2nd 3rd 4th)

Baseline 95.7? 95.6 (95.64 95.83 95.27 95.69)
GNN-SD / 96.2 (96.14 96.24 96.22 96.20)

Table 10: Hyper-parameter Description

Hyperparameter Description

lr learning rate
weight-decay L2 regularization weight

dropout dropout rate
#layer number of hidden layers

#hidden hidden dimensionality
#head number of attention heads

#epoch number of training epochs
α, β, γ loss weight in Eq.(9)

Table 11: The hyper-parameters of each backbones under varying depths for citation datasets classificatoin, and the selected optimal loss
weights.

Dataset Backbone Layers Model Hyperparameters Loss Hyperparameters

Cora

GAT

2 lr=1e-2, weight-decay=1e-3, dropout=0.5, #hidden=64, #head=4, #epoch=300 α = 0.01, β = 0.001

4 lr=1e-2, weight-decay=1e-2, dropout=0.5, #hidden=128, #head=4, #epoch=300 α = 1.0, β = 1.0

8 lr=1e-2, weight-decay=1e-3, dropout=0.1, #hidden=64, #head=4, #epoch=300 α = 1.0, β = 1.0

16 lr=1e-2, weight-decay=1e-2, dropout=0.1, #hidden=16, #head=4, #epoch=300 α = 0.001, β = 0.1

GraphSage

2 lr=1e-2, weight-decay=1e-3, dropout=0.5, #hidden=64, #epoch=300 α = 0, β = 0.001

4 lr=1e-2, weight-decay=1e-3, dropout=0.5, #hidden=64, #head=4, #epoch=300 α = 0.01, β = 1.0

8 lr=1e-2, weight-decay=1e-3, dropout=0.1, #hidden=64, #epoch=300 α = 1.0, β = 0.001

16 lr=1e-3, weight-decay=1e-2, dropout=0.1, #hidden=128, #epoch=300 α = 0.001, β = 0.001

Citeseer

GAT

2 lr=1e-2, weight-decay=1e-3, dropout=0.8, #hidden=128, #head=4, #epoch=300 α = 0, β = 0.001

4 lr=1e-2, weight-decay=1e-2, dropout=0.6, #hidden=256, #head=4, #epoch=300 α = 1.0, β = 0.01

8 lr=1e-2, weight-decay=1e-2, dropout=0.1, #hidden=128, #head=4, #epoch=300 α = 0.1, β = 0.01

16 lr=1e-2, weight-decay=1e-4, dropout=0.1, #hidden=16, #head=4, #epoch=300 α = 0, β = 1.0

GraphSage

2 lr=1e-2, weight-decay=1e-2, dropout=0.6, #hidden=128, #epoch=300 α = 0, β = 10.0

4 lr=1e-2, weight-decay=1e-3, dropout=0.2, #hidden=128, #head=4, #epoch=300 α = 0, β = 0.01

8 lr=1e-2, weight-decay=1e-3, dropout=0.1, #hidden=128, #epoch=300 α = 0.001, β = 0.1

16 lr=1e-3, weight-decay=1e-2, dropout=0.1, #hidden=128, #epoch=300 α = 0.01, β = 0.001

Pubmed

GAT

2 lr=1e-2, weight-decay=1e-3, dropout=0.1, #hidden=64, #head=4, #epoch=300 α = 0.1, β = 0.1

4 lr=1e-2, weight-decay=1e-2, dropout=0.1, #hidden=128, #head=4, #head=4, #epoch=300 α = 0, β = 10.0

8 lr=1e-2, weight-decay=1e-2, dropout=0.1, #hidden=64, #head=4, #epoch=300 α = 0, β = 0.1

16 lr=1e-3, weight-decay=1e-3, dropout=0.1, #hidden=128, #head=4, #epoch=300 α = 1.0, β = 100.0

GraphSage

2 lr=1e-2, weight-decay=1e-3, dropout=0.2, #hidden=128, #epoch=300 α = 0.01, β = 0.01

4 lr=1e-2, weight-decay=1e-2, dropout=0.1, #hidden=64, #head=4, #epoch=300 α = 0.1, β = 0.001

8 lr=1e-3, weight-decay=1e-2, dropout=0.3, #hidden=64, #epoch=300 α = 0.1, β = 10.0

16 lr=1e-3, weight-decay=1e-2, dropout=0.1, #hidden=128, #epoch=300 α = 1.0, β = 100.0

I Hyper-parameter Settings of the Graph Classification Experiments, Table 3
We adopt the Adam optimizer [Kingma and Ba, 2014] for model training in this paper. For conducting 10-fold cross validation
on graph kernel datasets, the random seed is fixed for reproducing the results. The hyper-parameters (e.g. the number of
hidden dimensions) of the baseline models are set for matching the budget that each model contains around 100k parameters.
The Readout operator in Eq.(6) is set as the same as the one used in the baseline GNN backbone. For generating intermediate
logits, we leverage a sharing-weights 2-layer MLP to take intermediate graph embeddings as input. Specially, GIN model which
has already contained intermediate prediction layers to generate residual probability scores for the final output distribution, no
extra MLP is introduced. For the choice of the hyper-parameters of α, β and γ in Eq.(9), we carried out a simple grid search
at the range of α ∈ {0, 0.1, 1}, β ∈ {0, 0.1, 1}, γ ∈ {0, 0.01, 0.1, 1} for each controlled experiments. Then, the detailed
hyper-parameters are summarized in Table 12.

Table 12: The hyper-parameters of each backbones on graph kernel datasets for matching the baseline budgets, and the selected optimal loss
weights.

Dataset Backbone Model Hyperparameters Loss Hyperparameters

ENZYMES

GCN lr=7e-4, weight-decay=0, dropout=0, #layer=4, #hidden=128, #epoch=1000 α = 0, β = 0.1, γ = 0

GAT lr=1e-3, weight-decay=0, dropout=0, #layer=4, #hidden=16, #head=8, #epoch=1000 α = 1, β = 0.1, γ = 0

GraphSage lr=7e-4, weight-decay=0, dropout=0, #layer=4, #hidden=96, #epoch=1000 α = 0, β = 1, γ = 0

GIN lr=7e-3, weight-decay=0, dropout=0, #layer=4, #hidden=96, #epoch=1000 α = 0.1, β = 1, γ = 1

GatedGCN lr=7e-4, weight-decay=0, dropout=0, #layer=4, #hidden=64, #epoch=1000 α = 1, β = 0.1, γ = 0

DD

GCN lr=1e-5, weight-decay=0, dropout=0, #layer=4, #hidden=128, #epoch=1000 α = 0, β = 0, γ = 0.01

GAT lr=5e-5, weight-decay=0, dropout=0, #layer=4, #hidden=16, #head=8, #epoch=1000 α = 0, β = 0.1, γ = 0

GraphSage lr=1e-5, weight-decay=0, dropout=0, #layer=4, #hidden=96, #epoch=1000 α = 1, β = 0, γ = 0

GIN lr=1e-3, weight-decay=0, dropout=0, #layer=4, #hidden=96, #epoch=1000 α = 0, β = 1, γ = 0

GatedGCN lr=1e-5, weight-decay=0, dropout=0, #layer=4, #hidden=64, #epoch=1000 α = 0, β = 0.1, γ = 0.01

PROTEINS

GCN lr=7e-4, weight-decay=0, dropout=0, #layer=4, #hidden=128, #epoch=1000 α = 0, β = 1, γ = 0

GAT lr=1e-3, weight-decay=0, dropout=0, #layer=4, #hidden=16, #head=8, #epoch=1000 α = 0, β = 0, γ = 0.01

GraphSage lr=7e-5, weight-decay=0, dropout=0, #layer=4, #hidden=96, #epoch=1000 α = 0, β = 1, γ = 1

GIN lr=7e-3, weight-decay=0, dropout=0, #layer=4, #hidden=96, #epoch=1000 α = 1, β = 1, γ = 1

GatedGCN lr=1e-4, weight-decay=0, dropout=0, #layer=4, #hidden=64, #epoch=1000 α = 0, β = 1, γ = 0

